EFFECTS OF GLOMUS FASCICULATUM AND TRICHODERMA ASPERELLOIDES IN ROOTS OF GROUNDNUT (CV. WESTERN-51) AGAINST PATHOGEN SCLEROTIUM ROLFSII

Khirood Doley, Mayura Dudhane, Mahesh Borde, Paramjit K. Jite

Abstract


Sclerotium rolfsii (Sacc.) is the causal agent of stem-rot of groundnut plants which is an important damaging soil-borne root pathogen worldwide. Arbuscular mycorrhizal (AM) fungi (Glomus fasciculatum) and Trichoderma asperelloides have shown potential bio-control agent properties against several soil-borne plant pathogens. Interactions between G. fasciculatum, T. asperelloides and soil-borne pathogen S. rolfsii were investigated in this present pot culture experiment. The inoculation of G. fasciculatum and T. asperelloides reduced the severity of disease but their combinations were most effective in reducing harmful effects of S. rolfsii. The arbuscule percentage of AM fungi was affected by presence of T. asperelloides but chlorophyll content got increased by AM fungi or T. asperelloides treatments during S. rolfsii attack. The defense related physiological, biochemical and anti-oxidant activities observed in roots of groundnut plant significantly increased by single inoculation of AM fungi or Trichoderma. But, the combined inoculations of AM fungi and Trichoderma species showed the highest defense related activities. Moreover, single application of either AM fungi or Trichoderma species showed potential for the biocontrol of soil-borne plant pathogen but their combined application attributed most substantial inhibition in development of pathogen

Keywords


AM fungi, antioxidant enzyme, biochemical, bio-control, chlorophyll, defense, disease severity, soil-borne

References


Al-Aksar, A.A. and Y.M. Rashad. 2010. Arbuscular Mycorrhizal Fungi: A Biocontrol Agent against Common Bean Fusarium Root Rot Disease. Plant Pathol. 9: 31-38.

Allen, E.B., M.F. Allen, D.J. Helm, J.M. Trappe, R. Moliva and E. Rincon. 1995. Patterns and regulation of mycorrhizal and fungal diversity. Plant and Soil. 170: 47-62.

Arnon, D.J. 1949. Copper enzymes in isolated chloroplasts. J Plant Cell Physiol. 4: 29-30.

Blilou, I., P. Bueno, J.A. Ocampo, J.M. Garcia-Garrido. 2000. Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal fungus Glomus mosseae. Mycol Res. 104: 722-725.

Christopher, D.J., T.S. Raj, S.U. Rani and R. Udaykumar. 2010. Role of defense enzymes activity in tomato as induced by Trichoderma virens against Fusarium wilt caused by Fusarium oxysporum f sp. lycopersici. J Biopesticides. 3: 158-162.

Druzhinina, I.S., V. Seidl-Seiboth, A. Herrera-Estrella, B.A. Horwitz, C.M. Kenerley, E. Monte, P.K. Mukherjee, S. Zeilinger, I.V. Grigoriev, C.P. Kubicek. 2011. Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol. 9: 749-759.

Freeman, B.C. and G.A. Beattie. 2008. An Overview of Plant Defenses against Pathogens and Herbivores. The Plant Health Instructor. DOI: 10.1094/PHI-I-2008-0226-01.

Gerdemann, J.W. and T.H. Nicholson. 1963. Spores of Mycorrhizal Endogene species extracted by wet sieving and decanting. Trans Brit Mycol Soc. 46: 235-244.

Harman, G.E., A.H. Herrera-Estrella, B.A. Horwitz and M. Lorito. 2012. Trichoderma – from basic biology to biotechnology. Microbiol. 158: 1-2.

Hermosa, R., A Viterbo, I.I. Chet and E. Monte. 2010. Plant-beneficial effects of Trichoderma and of its genes. Microbiol. 158: 17-25. DOI: 10.1099/mic.0.052274-0.

Jaklitsch, W.M., G.J. Samuels, A. Ismaiel and H. Voglmayr. 2013. Disentangling the Trichoderma viridescens complex. Persoonia. 31: 112-146.

Jayalakshmi, S.K., S. Raju, S.U. Rani, V.I. Benagi and K. Sreeramulu. 2009. Trichoderma harzianum L1 as a potential source for lytic enzymes and elicitor of defense responses in chickpea (Cicer arietinum L.) against wilt disease caused by Fusarium oxysporum f. sp. ciceri. Aus J Crop Sci. 3: 44-52.

Kokalis-Burelle, N., D.M. Porter, R. Rodriguez-Kabana, D.H. Smith and P. Subrahmanyamm. 1997. Compendium of Peanut Diseases, 2nd ed. APS Press, St. Paul.

Li, H.Y., G.D. Yang and H.R. Shu. 2006. Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr.), which includes transcriptional activation of the class III chitinase gene. VCH3. Plant Cell Physiol, 47: 154-163.

Lowry, O.H., N.J. Rosenbrough, A.L. Far and R.J. Randall. 1951. Protein measurement with the Folin-Phenol reagent. J Biol Chem. 193: 265-275.

Lowry, O.H., N.R. Roberts, W.S. Mei-Ling and Crawford. 1954. The quantitative histochemistry of brain II. Enzyme measurement. J Biol Chem. 207: 19-37.

Madan Mohan, M. and S.N. Nigam. 2013. Principles and Practices for Groundnut Seed Production in India. Information Bulletin No. 94. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. Pp. 64.

Mahadevan, A. and R. Shridhar. 1982. Methods in physiological plant pathology. Second edition, Sivakami publication, Madras. Pp. 153-155.

Malick, C.P. and M.B. Singh. 1980. Phenolics. In: Plant enzymology and histo enzymology, Kalyani publishers, New Delhi. Pp. 286.

Mathur, N. and A. Vyas. 1996. Biochemical changes in Ziziphus xyloropus by VA mycorrhizae. Botanical Bull. Academia Sinica. 37: 209-212.

Mehan, V.K., C.D. Mayee and D. McDonald. 1994. Management of Sclerotium rolfsii caused stem and pod rots of groundnut a critical review. International J Pest Management. 40: 313-320.

Melouk, H.A. and P.A. Backman. 1995. Management of Soilborne Fungal Pathogens. In: Melouk, H.A. and Shokes, F.M. (Ed.) 1995: Peanut health management. APS Press, St. Paul, MN. 75-85.

Mukherjee, P.K., A.K. Mukherjee and S. Kranthi. 2013. Reclassification of Trichoderma viride (TNAU), the most widely used commercial biofungicide in India, as Trichoderma asperelloides. Open Biotechnological J. 7: 7-9. DOI:10.2174/1874070701307010007

Ngadze, E., D. Icishahayo, T.A. Coutinho and J.E. van der Waals. 2012. Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Dis. 96: 186-192.

Parniske, M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 6: 763-775.

Putter, J. 1974. Peroxidase. In: Bergmeyer, H.U. (Ed.) 1974: Methods of enzymatic analysis. Academic Press, New York, USA. Pp. 567-1124.

Reithner, B., E. Ibarra-Laclette, R.L. Mach, A. Herrera-Estrella. 2011. Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol. 77: 4361-4370.

Saksirirat, W., P. Chareerak and W. Bunyatrachata. 2009. Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and gray leaf spot in tomatoes. As J Food Ag-Ind. Special Issue. S99-S104.

Sasaki, K., T. Iwai, S. Hiraga, K. Kuroda, S. Seo, I. Mitsuhara, A. Miyasaka, M. Iwano, H. Ito, H. Matsui and Y. Ohashi. 2004. Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol. 45: 1442-1452.

Sennoi, R., N. Singkham, S. Jogloy, S. Boonlue, W. Salsirirat, T. Kesmala and A. Patanothai. 2013. Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Prot. 54: 148-153.

Sheng, M., M. Tang, H. Chen, B. Yang, F. Zhang and Y. Huang. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18: 287-96.

Shokes, F.M., K. Rhogalski, D.W. Gorbet, T.B. Brenneman and D.A. Berger. 1996. Techniques for inoculation of peanut with Sclerotium rolfsii in the greenhouse and field. Peanut Sci. 23: 124-128.

Singh, G. and K.G. Mukherji. 2006. Root exudates as determinant of rhizospheric microbial diversity. In: Mukerji, K.G., Manoharachary, C. and Singh, J. (Ed.) 2006: Microbial activity in the rhizosphere. Springer Verlag, Berlin, Heidelberg. Pp. 39-55.

Smith, S.E. and R.J. Read. 2008. Mycorrhizal symbiosis. 3rd edition. Academic Press, London, UK.

Tabaldi, L.A., R. Ruppenthal, D. Cargnelutti, V.M. Morsch, L.B. Pereira and M.R.C. Schetinger. 2007. Effects of metal elements on acid phosphatase activity in cucumber (Cucumis sativus L.) seedlings. Environ Exp Bot. 59: 43-48.

Taiz, L. and E. Zeiger. 2002, Plant physiology, third ed. Sinauer, Sunderland. Pp. 690.

Tanwar A., A. Aggarwal, S. Kaushish and S. Chauhan. 2013. Interactive effect of AM fungi with Trichoderma viride and Pseudomonas fluorescens on growth and yield of broccoli. Plant Protect Sci. 49: 137-145.

Topolovec-Pintaric, S., S. Zutic and E. Dermic. 2013.

Enhanced growth of cabbage and red beet by Trichoderma viride. Acta agriculturae Slovenica. 101: 87-92.

Trappe, J.M. 1982. Synoptic key to the genera and species of Zygomycetous mycorrhizal fungi. Phytopathol. 72: 1102-1108.

Trouvelot, A., J.L. Kough and V. Gianinazi-Pearson. 1986. Mesure du Taux de Mycorhization V A d’un Systeme Radiculaire Recherche de Methods D’estimation Ayant Une Signification Fonctionnelle. In: Gianinazzi-Pearson, V. and Gianinazzi, S. (Eds.) 1986: Physiological and Genetical Aspects of Mycorrhizae, INRA Publications, Paris. Pp. 217-221.

Whipps, J.M. 2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot. 82: 1198-1227.

Ziedan, E.H., I.S. Elewa, M.H. Mostafa and A.F. Sahab. 2011. Applications of mycorrhizae for controlling root rot diseases of sesame. J Plant Protect Res. 51: 354-361.


Full Text: PDF

Refbacks

  • There are currently no refbacks.




Copyright (c) 2014 Khirood Doley, Mayura Dudhane, Mahesh Borde, Paramjit K. Jite

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.