Wentao Sheng, Xuewen Chai, Yousheng Rao, Xutang Tu, Shangguang Du


Asparagus (Asparagus officinalis L.) is a horticultural plant with health care, which is meaningful to sequence the entire chloroplast (cp) genome of asparagus with Hiseq4000 platform. The complete cp genome maps a circular molecule of 156,699bp built with a quadripartite organization: two inverted repeats (IRs) of 26,531bp, separated by a large single copy (LSC) sequence of 84,999bp and a small single copy (SSC) sequence of 18,638bp. A total of 112 genes comprising of 78 protein-coding genes, 30 tRNAs and 4 rRNAs were successfully annotated, 17 of which included introns. The identity, number and GC content of asparagus cp genes were similar to those of other asparagus species genome. Analysis revealed 81 simple sequence repeat (SSR) loci, most composed of A or T, contributing to a bias in base composition. A maximum likelihood of phylogenomic evolution analysis showed that asparagus was closely related to Polygonatum cyrtonema that belonged to the genus Asparagales.The availability of the complete cp genome sequence of asparagus provides valuable information for chloroplast genetic engineering and phylogenetic analyses in Asparagales.


Asparagus officinalis L.; Chloroplast genome; Phylogenomic evolution; Asparagales

Full Text:



Alex, H., L. M. Jim. 2017. A century of sex determination in flowering plants. J. Hered., 108(1): 69-77.

Alekseyev, M.A., P.A. Pevzner. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol., 19:455-477.

Angiosperm Phylogeny Group. 1998. An ordinal classification for the families of flowering plants.Ann. Mo. Bot. Gard., 85(4):531-553.

Angiosperm phylogeny group. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc., 141: 399-436.

Angiosperm phylogeny group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc., 161: 105-121.

Angiosperm phylogeny group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc., 181(1):1-20.

Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25:3389-3402.

Bankevich, A., S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham, A. D. Prjibelski, A. V. Pyshkin, Sirotkin, A. V. Vyahhi. N.G. Tesler, R. B. Luo, B. H. Liu, Y. L. Xie, Z. Y. Li, W. H. Huang, J. Y. Yuan, G. Z. He, Y. X. Chen, Q. Pan, Y.J. Liu, J. B. Tang, G. X. Wu, H. Zhang, Y. J. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. L. Han, D. W. Cheung, S. M. Yiu, S. L. Peng, X.Q. Zhu, G. M. Liu, X. K. Liao, Y. R. Li, H. M. Yang, J. Wang, T. W. Lam, J. Wang. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 1(1):1-6.

Chen, J. L., Y. Zheng, L. Qin, Y. Wang, L. F. Chen, Y. J. He, Z. J. Fei, G. Lu, 2016.Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC Plant Biol., 16:80-98.

Gao, L., Y. J. Su, T. Wang. 2010. Plastid genome sequencing, comparative genomics, and phylogenomics: current status and prospects. J. Syst. Evol., 48(2):77-93.

Gao, W. J., S. F. Li, G. J. Zhang, N. N. Wang, C. L. Deng, L. D. Lu. 2013. Comparative analysis of gene expression by microarray analysis of male and female flowers in Asparagus officinalis. Biosic. Biotechnol. Biochem., 77(6):1193-1199.

Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes, A. Drummond. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647-1649.

Lee, Y. O., A. Kanno, T. Kameya. 1996. The physical map of the chloroplast DNA from Asparagus officinalis L. Theor. Appl. Genet., 92(1):10-14.

Lohse, M., O. Drechsel, S. Kahlau, R. Bock. 2013. OrganellarGenomeDRAW--a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res., 41: W575-581.

Li, J. L., S. Wang, J. Yu, L. Wang, S. L. Zhou. 2013. A modified CTAB protocol for plant DNA extraction.Chinese Bulletin of Botany. 48 (1): 72-78.

Li, X. W., H. H. Gao, Y. T. Wang, J. Y. Song, R. Henry, H. Z. Wu, Z. G. Hu, H. Yao, H. M. Luo, K. Luo, H. L. Pan, S. L. Chen. 2013. Complete chloroplast genome sequence of Magnolia grandiflora and comparative analysis with related species. Sci. China Life Sci., 56: 189-198.

Stevens, P.F..1986. Evolutionary classification in botany, 1960-1985. Journal of the Arnold Arboretum. 67(3):313-339

Wyman, S. K., R. K. Jansen, J. L. Boore. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 20:3252-3255.

Zhong, C. G., C.Y. Jiang, X.C. Xia, T. Mu, L. G. Wei, Y. T. Lou, X. S. Zhang, Y. Q. Zhao, X. L. Bi. 2015. Antihepatic fibrosis effect of active components isolated from green Asparagus (Asparagus officinalis L.) involves the inactivation of hepatic stellate cells. J. Agric. Food Chem., 63 (26):6027-6034.


  • There are currently no refbacks.


Journal of Plant Breeding and Genetics

ISSN: 2305-297X (Online), 2308-121X (Print)

© ESci Journals Publishing. All Rights Reserved.