Somayeh Gholamzadeh, Ümit Incekara


With millions of species and their life-stage transformations, the animal kingdom makes taxonomy difficult. Insects are the most numerous group of animals, and its taxonomy is primarily based on morphological characters. However, molecular systems have been developed in recent years especially in order to discriminate closely related species and in order to identify the species which have not been distinguished by taxonomic methods currently employed. Over the last ten decades, the use of molecular methods, especially DNA sequence data has had a profound influence on taxonomy. The DNA sequences which are commonly used, occur either in the nucleus of the cell or in organelles such as mitochondria. This is a review article about molecular taxonomy studies on insects, especially Coleoptera aquatic ones.


Aquatic insects; molecular taxonomy; Coleoptera; nucleus and mitochondrial genes; review

Full Text:



Agusti, N., D. Bourguet, T. Spataro, M. Delos, L. Folcher, N. Eychenne and R. Arditi. 2005. Detection, identification and geographical distribution of European corn borer larval parasitoids using molecular markers. Molecular Ecology, 14: 3267-3274.

Bae, J. S., I. Kim, S. R. Kim, B. R. Jin and H. D. Sohn. 2001. Mitochondrial DNA sequence variation of the mushroom pest flies, Lycoriella mali (Diptera: Sciaridae) and Coboldia fuscipes (Diptera: Scatopsidae), in Korea. Applied Entomolgical Zoology, 36: 451–457.

Baer, C. F., D. W. Tripp, A. Bjorksten and M. F. Antolin. 2004. Phylogeography of a parasitoid wasp (Diaretiella rapae): no evidence of host-associated lineages. Molecular Ecology, 13: 1859–1869.

Bailey, R. C., R. H. Norris and T. B. Reynoldson. 2001. Taxonomic resolution of benthic macroinvertebrate communities in bioassessment. Journal of the North American Benthological Society, 20: 280–286.

Baker, C. S. and S. R. Palumbi. 1994. Which Whales Are Hunted? A Molecular Genetic Approach to Monitoring Whaling Science, 265: 1538-1539.

Ball, S. L. and P. D. N. Hebert. 2005. Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of the North American Benthological Society, 24(3): 508–524.

Ball, S. L. and K. F. Armstrong. 2006. DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Canadian Journal of Forest Research, 36: 337–350.

Barber, P. and S. L. Boyce. 2006. Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae, pp. 2053-2061. In: Proceedings of the Royal Society.

Bernhard, D., I. Ribera, A. Komarek and R. G. Beutel. 2009. Phylogenetic analysis of Hydrophiloidea (Coleoptera: Polyphaga) based on molecular data and morphological characters of adults and immature stages. Insect Systematics & Evolution, 40: 3–41.

Bernhard, D., C. Schmidt,A. Korte, G. Fritzsch and R. G. Beutel. 2006. From terrestrial to aquatic habitats and back again – molecular insights into the evolution and phylogeny of Hydrophiloidea (Coleoptera) using multigene analyses. Zoologica Scripta, 35: 597–606.

Besansky, N. J., T. Lehmann, G. T. Fahey, D. Fontenille, L. E. O. Braack, W. A. Hawley and F. H. Collins, 1997. Patterns of mitochondrial variation within and between African malaria vectors, Anopheles gambiae and An. arabiensis, suggest extensive gene flow. Genetics, 147: 1817–1828.

Blaxter, M. 2003. Counting angels with DNA. Nature, 421: 122–124.

Boyce, T. M., M. E. Zwick, and C. F. Aquadro, 1989. Mitochondrial DNA in the bark weevils: size, structure, and heteroplasmy. Genetics, 123: 825–836.

Brower, A. 1994. Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera, Nymphalidae). Molecular Phylogenetics and Evolution, 3: 159–174.

Brown, W. M., M. George and A. C. Wilson, 1979. Rapid evolution of animal mitochondrial DNA, pp. 1967-1971. In: Proceedings of the National Academy of Sciences, USA.

Brown, J. M., O. Pellmyr, J. N. Thompson and R. G. Harrison. 1994a. Phylogeny of Greya (Lepidoptera, Prodoxidae) based on nucleotide sequence variation in mitochondrial cytochrome oxidase I and II: Congruence with morphological data. Molecular Biology and Evolution, 11: 128–141.

Brown, J. M., O. Pellmyr, J. N. Thompson and R. G. Harrison, 1994b. Mitochondrial DNA phylogeny of the Prodoxidae (Lepidoptera: Incurvarioidea) indicates rapid ecological diversification of yucca moths. Annals of the Entomological Society of America, 87: 795–802.

Brown, W. M. 1985. The mitochondrial genome of animals, 95-130. In: MacIntyre, R.J. (Ed.), Molecular Evolution and Genetics.

Bucklin, A., P. H. Wiebe, S. B. Smolenack, N. J. Copley, J. G. Beaudet, K. G. Bonner, J. Färber Lorda and J. J. Pierson, 2007. DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). Journal of Plankton Research, 29: 483-493.

Cameron ,S. L., S. C. Barker and M. F. Whiting. 2006. Mitochondrial genomics and the relationships and validity of the new insect order Mantophasmatodea. Molecular Phylogenetics and Evolution, 38: 274–279.

Cameron, S. L., C. A. D′Hearse, K. B. Miller, M. F. Whiting and S. C. Barker, 2004. Mitochondrial genome data alone are not enough to unambiguously resolve the relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). Cladistics, 20: 543–557.

Cameron, S. L., C. L. Lambkin, S. C. Barker and M. F. Whiting, 2007. Utility of mitochondrial genomes as phylogenetic markers for insect intraordinal relationships—a case study from flies (Diptera). Systematic Entomology, 32:40–59.

Carapelli, A., F. Frati, P. P. Fanciulli and R. Dallai. 1995. Genetic differentiation of six sympatric species of Isotomurus (Collembola, Isotomidae); is there any difference in their microhabitat preference? European Journal of Soil Biology, 31: 87–99.

Caterino, M. S. and F. A. H. Sperling. 1999. Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution, 11: 122–137.

Caterino, M. S., V. L. Shull, P. M. Hammond and P. Vogler, 2002. The basal phylogeny of the Coleoptera based on 18S rDNA sequences. Zoologica Scripta, 31: 41–49.

Caterino, M. S. and A. P. Vogler, 2002. The phylogeny of the Histeroidea (Staphyliniformia). Cladistics, 18: 394–415.

Caterinoa, M. S., T. Hunt and A. P. Vogler, 2005. On the constitution and phylogeny of Staphyliniformia (Insecta: Coleoptera). Molecular Phylogenetics and Evolutio, 34: 655–672.

Chalwatzis, N., J. Hauf, Y. V. D. Peer, R. Kinzelbach and F. K. Zimmermann, 1996. 18S ribosomal RNA genes in insects: primary structure of the genes and molecular phylogeny of the Holometabola. Annals of the Entomological Society of America, 89: 788–803.

Çiampor, J. F. and I. Ribera, 2006. Description of the larva and its phylogenetic relation to Graphelmis (Coleoptera: Elmidae: Elminae). European Journal of Entomology, 103: 627–636.

Clark, C. G., B. W. Tague, V. C. Ware and S. A. Gerbi, 1984. Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucleic Acids Research, 12: 6197–6220.

Cryan, J. R., J. K. Liebherr, J. W. Fetzner and M. F. Whiting, 2001. Evaluation of relationships within the endemic Hawaiian Platynini (Coleoptera: Carabidae) based on molecular and morphological evidence. Molecular Phylogenetcs and Evolution, 21: 72–85.

Chen, D., O. Eulenstein,D. Fernández-Baca and J. G. Burleigh, 2006. Improved Heuristics for Minimum -Flip Supertree Construction. Evolutionary Bioinformatics, 2: 347-356.

Danforth, B. N., C. P. Lin and J. Fang, 2005. How do insect nuclear ribosomal genes compare to protein-coding genes in phylogenetic utility and DNA substitution patterns? Systematic Entomology, 30: 549–562.

DeSalle, R. and V. J. Birstein, 1996. PCR identification of black caviar. Nature, 381: 197–198.

Desneux, N., P. Stary, C. J. Delebecque, T. D. Gariepy, R. J. Barta, K. A. Hoelmer and G. E. Heımpel. 2009a. Cryptic species of parasitoids attacking the Soybean Aphid (Hemiptera: Aphididae) in Asia: Binodoxys communis and Binodoxys koreanus (Hymenoptera: Braconidae: Aphidiinae). Annals of the Entomological Society of America, 102: 925–936.

Dobler, S. and J. K. Mu¨ller, 2000. Phylogeny of carrion beetles (Coleoptera, Silphidae) based on mitochondrial cytochrome oxidase sequences. Molecular Phylogenetcs and Evolution, 15: 390–402.

Dowton, M., L. R. Castro and A. D. Austin, 2002. Mitochondrial gene rearrangements as phylogenetic characters in the invertebrates: the examination of genome ‘morphology’. Invertebrate Systematics, 16:345–356.

Eddy, S. R. 2002. A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure. BMC Bioinformatics, 3: 18.

Emerson, B. C. and G. P. Wallis. 1995. Phylogenetic relationships of the Prodontria (Coleoptera; Scarabaeidae; Subfamily Melolonthinae), derived from sequence variation in the mitochondrial cytochrome oxidase II gene. Molecular Phylogenetcs and Evolution, 4: 433–447.

Fox, G. E., E. Stackebrandt, R. B. Hespell and 16 other authors, 1980. The phylogeny of prokaryotes. Science, 209: 457–463.

Frati, F., C. Simon, J. Sullivan and D. L. Swofford. 1997a. Evolution of the mitochondrial cytochrome oxidase II gene in Collembola. Journal of Molecular Evolution, 44: 145–158.

Funk, D. J. and K. E. Omland, 2003. Species-level paraphyly and polyphyly: frequency, cause and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34: 397–423.

Funk, D., D. Futuyma, G. Orti and A. Meyer. 1995. A history of host associations and evolutionary diversification for Ophraella (Coleoptera, Chrysomelidae): New evidence from mitochondrial DNA. Evolution, 49: 1008–1017.

Gadau, J., S. G. Brady and P. S. Ward, 1999. Systematics, distribution, and ecology of an endemic California Camponotus quercicola (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 92: 514–522.

Galia´n, J., P. De La Ru´a, J. Serrano, C. Juan and G. M. Hewitt. 1999. Phylogenetic relationships in West Mediterranean Scaritina (Coleoptera: Carabidae) inferred from mitochondrial COI sequences and karyotype analysis. Journal of Zoological Systematics and Evolutionary Research, 37: 85–92.

Gariepy, T. D., U. Kuhlmann, C. Gillott and M. Erlandson, 2008. Alargescale comparison of conventional and molecular meth-ods for the evaluation of host – parasitoid associations in non-target risk-assessment studies. Journal of Applied Ecology, 15: 481 – 495.

Gibson, A., V. G. Gowri-Shankar, P. G. Higgs and M. Rattray. 2004. A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Molecular Biology and Evolution, 22: 251–264.

Godfray, H. C. J. 2002. Challenges for taxonomy. Nature, 417: 17–19.

Gowri-Shankar, V. and M. Rattray. 2006. On the correlation between composition and site-specific evolutionary rate: implications for phylogenetic inference. Molecular Biology and Evolution, 23: 352–364.

Gray, M. W., G. Burger and B. F. Lang, 1999. Mitochondrial evolution. Science, 283:1476–1481.

Hammond, P. E. 1992. Species inventory, pp. 17-39. In: B. Groombridge, ed., Global biodiversity, status of the Earth’s living resources: London, Chapman and Hall.

Hancock, J. M., D. Tautz and G. A. Dover, 1988. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Molecular Biology and Evolution, 5: 393– 414.

Harper, G. L., R. A. King, C. S. Dodd, J. D. Harwood, D. M. Glen, M. W. Bruford and W. O. C. Symondson, 2005. Rapid screening of invertebrate predators for multiple prey DNA targets. Molecular Ecology, 14: 819-827.

Hassouna, N., B. Michot and J. P. Bachellerie, 1984. The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Research, 12: 3563–3583.

Hawksworth, P. M. and M. T. Kalin-Arroyo, 1995. Magnitude and distribution of biodiversity, pp. 107-191. In: Global Biodiversity Assessment (eds. Heywood VH & Watson RT).

Hayashi, M. and T. Sota, 2008. Discrimination of two Japanese water pennies, Eubrianax granicollis Lewis and E.ramicornis Kiesenwetter (Coleoptera: Psephenidae), based on laboratory rearing and molecular taxonomy. Entomological Science 11: 349–357.

Hayashi, M. and T. Sota, 2010. Identification of elmid larvae (Coleoptera: Elmidae) from Sanin District of Honshu, Japan, based on mitochondrial DNA sequences. Entomological Science, 13: 417–424.

Hebert, P. D. N., A. Cywinska, S. L. Ball and J. R. Dewaard, 2003a. Biological identifications through DNA bar codes. Proceedings of the Royal Society of London Biological Sciences, 270: 313–321.

Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen and W. Hallwachs, 2004a. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101: 14812– 14817.

Hebert, P. D. N., S. Ratnasingham and J. R. Dewaard, 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B, Biological Sciences, 270: S596– S599.

Herbert, P. D. N., M. Y. Stoeckle, T. S. Zemlak and C. M. Francis, 2004b. Identification of birds through DNA barcodes. PLoS Biology, 2: 1657–1663.

Hibbett, D. S., R. H. Nilsson, M. Snyder, M. Fonseca, J. Costanzo and M. Shonfeld, 2005. Automated phylogenetic taxonomy: an example in the homobasidiomycetes (mushroom-forming fungi). Systematic Biology, 54: 660–668.

Hogg, I. D. and P. D. N. Hebert, 2004. Biological identifications of springtails (Collembola: Hexapoda) from the Canadian arctic, using mitochondrial DNA barcodes. Canadian Journal of Zoology, 82: 1–6.

Hwang, U. W., C. J. Park, T. S. Yong and W. Kim, 2001. One-step PCR amplification of complete arthropod mitochondrial genomes. Molecular Phylogenetics and Evolution, 19: 345–352.

Jäch, M. A. and M. Balke, 2008. Global diversity of water beetles (Coleoptera) in freshwater. Hydrobiologia, 595: 419-442.

Jia, W. and P. G. Higgs, 2007. Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Molecular Biology and Evolution, 25: 339–351.

Jordan, S., C. Simon and D. Polhemus, 2003. Molecular systematics and adaptive radiation of Hawaii’s endemic damselfly genus Megalagrion (Odonata: Coenagrionidae). Systematic Biology, 52: 89–109.

Jordan, S., C. Simon, D. Foote and A. Englund Ronald, 2005. Phylogeographic patterns of Hawaiian Megalagrion damselflies (Odonata: Coenagrionidae) correlate with Pleistocene island boundaries. Molecular Ecology, 14: 3457–3470.

Kallersjo, M., F. S. Farris, M. W. Chase, B. Bremer, M. F. Fay, C. J. Humphries, G. Petersen, O. Seberg and K. Bremer, 1998. Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Systematics and Evolution, 213: 259– 287.

Kim, C. G., H. Z. Zhou, Y. Imura, O. Tominaga, Z. H. Su and S. Osawa, 2000: Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Molecular Biology and Evolution, 17: 137–145.

Kim, I., J. S. Bae, H. D. Sohn, P. D. Kang, K. S. Ryu, B. H. Sohn, W. B. Jeong and B. R. Jin, 2000a. Genetic homogeneity in the domestic silkworm, Bombyx mori, and phylogenetic relationship between B. mori and the wild silkworm moth, B. mandarina, using mitochondrial COI gene sequences. International Journal of Industrial Entomology, 1: 9–17.

Kjer, K. M. 2004. Aligned 18S and insect phylogeny. Systematic Biology, 53: 506– 514.

Ko¨pf, A., N. F. Rank, H. Roininen, R. Julkunen-Tiitto, J. M. Pasteels and J. Tahvanainen. 1998. The evolution of host-plant use and sequestration in the leaf beetle genus Phratora (Coleoptera: Chrysomelidae). Evolution, 52: 517–528.

Korte, A., I. Ribera, R. G. Beutel and D. Bernhard, 2004. Interrelationships of Staphyliniform groups inferred from 18S and 28S rDNA sequences, with special emphasis on Hydrophiloidea (Coleoptera, Staphyliniformia). Journal of Zoological Systematics and Evolutionary Research, 42: 281–288.

Lavrov, D. V., J. L. Boore and W. M. Brown, 2000. The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Molecular Biology and Evolution, 17: 813–824.

Lenat, D. R. and V. H. Resh, 2001. Taxonomy and stream ecology—The benefits of genus- and species- level identifications. Journal of the North American Benthological Society, 20: 287–298.

Lin, C. P. and B. N. Danforth, 2004. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined data sets. Molecular Phylogenetics and Evolution, 30: 686–702.

Liu, H. and A. T. Beckenbach, 1992. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Molecular Phylogenetics and Evolution, 1: 41–52.

Madaric´, B. B., V. M. Stankovic´, M. Cˇorak, D. Ugarkovic´ and A. Komarek. 2013. Contribution to molecular systematics of water scavenger beetles (Hydrophilidae, Coleoptera). Journal of Zoological Systematics and Evolutionary Research, 51: 165–171.

Maddison, D. R., M. D. Baker and K. A. Ober, 1999. Phylogeny of carabid beetles as inferred from 18S ribosomal DNA (Coleoptera: Carabidae). Systematic Enthomology, 24: 103–118.

Maddison, D., M. D. Baker and K. A. Ober, 1998. A preliminary phylogenetic analysis of 18S ribosomal DNA of carabid beetles (Coleoptera: Carabidae), pp. 229-250. In: Ball, G. E.; Casale, A.; Taglianti, A. V. (eds), ′Phylogeny and Classification of Caraboidea (Coleoptera: Adephaga). Proceedings of a Symposium (1996, Florence Italy) XX International Congress of Entomology.

Marvaldi, A. E., A. S. Sequeira, C. W. O’Brien and B. D. Farrell, 2002: Molecular and morphological phylogenetics of weevils (Coleoptera, Curculionoidea): do niche shifts accompany diversification? Systematic Biology, 51: 761–785.

Masta, S. E., S. J. Longhorn and J. L. Boore, 2009. Arachnid relationships based on mitochondrial genomes, asymmetric nucleotide and amino acid bias affects phylogenetic analyses. Molecular Phylogenetic and Evolution, 50 (1): 117–128.

McMahon, M. M. and M. J. Sanderson, 2006. Phylogenetic supermatrix analysis of GenBank sequences from 2228 papilionoid legumes. Systematic Biology, 55: 818–836.

Meyer, A. and R. Zardoya, 2003. Recent advances in the (molecular) phylogeny of vertebrates. Annual Review of Ecology, Evolution, and Systematics, 34: 311–338.

Michot, B., N. Hassouna and J. P. Bachellerie, 1984. Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucleic Acids Research, 12: 4259–4279.

Miller, L. J., P. G. Allsopp, G. C. Graham and D. K. Yeates, 1999. Identification of morphologically similar canegrubs (Coleoptera: Scarabaeidae: Melolonthini) using a molecular diagnostic technique. Australian Journal of Entomology, 38: 189–196.

Miura, T., K. Maekawa, O. Kitade, Y. Abe and T. Matsumoto, 1998. Phylogenetic relationships among subfamilies in higher termites (Isoptera: Termitidae) based on mitochondrial COII gene sequences. Annals of the Entomological Society of America, 91: 515–523.

Mueller, R. L. and J. L. Boore. 2005. Molecular mechanisms of extensive mitochondrial gene rearrangement in plethodontid salamanders. Molecular Biology and Evolution, 22: 2104–2112.

Mullis, K. B., F. Faloona, S. Scharf, R. K. Saiki, G. Horn and H. Erlich, 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposium of Quantitative Biology, 51: 263–273.

Murataa, Y., M. Nikaidoa, T. Sasakia, Y. Caob, Y. Fukumotoc, M. Hasegawab and N. Okada, 2003. Afrotherian phylogeny as inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 28 (2): 253–260.

Nardi, F., A. Carapelli, R. Dallai and F. Frati, 2003. The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Molecular Biology, 12: 605–611.

Nardi, F., G. Spinsanti, J. L. Boore, A. Carapelli, R. Dallai and F. Frati. 2003. Hexapod origins monophyletic or paraphyletic? Science 299 (5614), 1887–18Ober, K., 2002: Phylogenetic relationships of carabid subfamily Harpalinae (Coleoptera) based on molecular sequence data. Molecular Phylogenetics and Evolution, 24: 228–248.

Paquin, P. and M. Hedin, 2004. The power and perils of ’molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae: Dictynidae) from Texas caves. Molecular Ecology, 13: 3239–3255.

Pashley, D. P., B. A. McPheron and E. A. Zimmer, 1993. Systematics of holometabolous insect orders based on 18S ribosomal RNA. Molecular Phylogenetics and Evolution, 2: 132–142.

Rao, S., A. Liston, L. Crampton and J. Takeyasu, 2006. Identification of larvae of exotic Tipula paludosa (Diptera: Tipulidae) and Toleracea in North America using mitochondrial cytB sequences. Annals of the Entomological Society of America, 99: 33–40.

Ribera, I., J.E. Hogan and A. P. Vogler. 2002. Phylogeny of hydradephagan water beetles inferred from 18S rRNA sequences. Molecular Phylogenetics and Evolution, 23: 43–62.

Saiki, R. K., S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich and N. Arnheim, 1985. Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230: 1350–1354.

Sanderson, M. J. and H. B. Shaffer. 2002. Troubleshooting molecular phylogenetic analysis. Annual Review of Ecology, Evolution, and Systematics, 33: 49–72.

Scheffer, S. J., M. L. Lewis and R. C. Joshi, 2006. DNA barcoding applied to invasive leafminers (Diptera: Agromyzidae) in the Philippines. Annals of the Entomological Society of America, 99: 204–210.

Sequeira, A. S., B. B. Normark and B. D. Farrell. 2000: Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles. Proceedings of the Royal Society of London, 267: 2359–2366.

Shao, R. and S. C. Barker, 2003. The highly rearranged mitochondrial genome of the plague thrips, Thrips imagines (Insecta: Thysanoptera): convergence of two novel gene boundaries and an extraordinary arrangement of rRNA genes. Molecular Biology and Evolution, 20: 362–370.

Short, A. E. Z. and M. Fikáček, 2013. Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera). Systematic Entomology, 38: 723–752.

Shull, V. L., A. P. Vogler, M. D. Baker, D. R. Maddison and P. M. Hammond, 2001. Sequence alignment of 18S ribosomal RNA and the basal relationships of Adephagan beetles: evidence for monophyly of aquatic families and the placement of Trachypachidae. Systematic Biology, 50: 945–969.

Simon, C., A. Frati F, Beckenbach, B. Crespi, H. Liu and P. Flook. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87: 651–702.

Soltis, P. S., D. E. Soltis and M. W. Chase, 1999. Angiosperm phylogeny inferred from multiple genes as a tool for comparative biology. Nature, 402: 402–404.

Sperling, F. A. H., G. S. Anderson and D. A. Hickey, 1994. A DNA-based approach to the identification of insect species used for post-mortem interval estimation. Journal of Forensic Science, 39: 418-427.

Ståhls, G. and K. Nyblom. 2000. Phylogenetic analysis of the genus Cheilosia (Diptera, Syrphidae) using mitochondrial COI sequence data. Molecular Phylogenetics and Evolution 15: 235–241.

Steinberg, S. and R. Cedergren. 1994. Structural compensation in atypical mitochondrial tRNAs. Nature Structural & Molecular Biology, 1: 507–510.

Stribling, J. B., S. R. Moulton and G. T. Lester. 2003. Determining the quality of taxonomic data. Journal of the North American Benthological Society. 22: 621–631.

Swofford, D. L., G. J. Olsen, P. J. Waddell and D. M. Hillis. 1996. Phylogenetic inference, pp. 407-514. In: Hillis, D. M., C. Moritz, B. K. Mable, (eds) Molecular Systematics. Sinauer, Sunderland, Massachusetts.

Thomas, W. K., J. Maa and A. C. Wilson. 1989. Shifting constraints on tRNA genes during mitochondrial DNA evolution in animals. New Biologist, 1: 93–100.

Traugott, M., J. R. Bell, G. R. Broad, W. Powell, F. J. F. van Veen, I. M. G. Vollhart and W. O. C. Symondson, 2008. Endoparasitism in cereal aphids: molecular analysis of a whole parasitoid community. Molecular Ecology, 17: 3928–3938.

Van Veen, T., L. van Winsen, J. B. A. Crusius, N. F. Kalkers, F. Barkhof, A. S. Pena, C. H. Polman and B. M. J. Uitdehaag 2003. Alpha-B-crystallin genotype has impact on the multiple sclerosis phenotype. Neurology. 61: 1245-1249.

Vences, M., M. Thomas, R. M. Bonett and D. R.Vieites, 2005. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philosophical Transactions of the Royal Society, 360: 1859–1868.

Vogler, A. and R. DeSalle. 1993. Phylogenetic patterns in costal North American Tiger Beetles (Cicindela dorsalis Say) inferred from mitochondrial DNA sequences. Evolution, 47: 1192–1202.

Walton, C., A. Dale and R. Jenevein. 1991. A Taxonomy and Performance Model of Data Skew Effects in Parallel Joins, pp. 537-547. In: Lohman, G. M., Sernadas, A., and Camps, R., editors, Proceedings of the 17th International Conference on Very Large Data Bases.

Wells, J. D. and F. A. H. Sperling 2001. DNA-based identification of forensically important Chrysomyinae (Diptera: Calliphoridae). Forensic Science International, 120: 110–115.

Wheeler, Q. D. 2004. Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society, B 359: 571–583.

Wheeler, W. C., M. Whiting, Q. D. Wheeler and J. M. Carpenter, 2001. The phylogeny of the extant hexapod orders. Cladistics, 17: 113–169.

Whiting, M. F., J. C. Carpenter, Q. D. Wheeler and W. C. Wheeler. 1997. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Systematic Biology, 46: 1–68.

Wiegmann, B. M., C. Mitter, J. C. Regier, T. P. Friedlander, D. M. Wagner and E. S. Nielsen. 2000. Nuclear genes resolve mesozoic-aged divergences in the insect order Lepidoptera. Molecular Phylogenetics and Evolution, 15: 242–259.

Wild Alexander, L. and D. R. Maddison. 2008. Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Molecular Phylogenetics and Evolution, 48: 877–891.

Will, K. W., B. D. Mishler and Q. D. Wheeler, 2005. The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54: 844–851.

Wolstenholme, D. R. 1992. Animal mitochondrial DNA: structure and evolution. International Review of Cytology, 141: 173–216.

Yamauchi, M. M., M. U. Miya and M. Nishida. 2004. Use of a PCR based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans. Insect Molecular Biology, 13: 435–442.

Zardoya, R. and A. Meyer. 1996. Phylogenetic performance of mitochondrial protein coding genes in resolving relationships among vertebrates. Molecular Biology and Evolution, 13 (7): 933–942.

Zhang, D. X. and F. M. Hewitt, 1997. Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology, 25: 99-120.

Zhang, D. X., J. M. Szymura and G. M. Hewitt. 1995. Evolution and structural conservation of the control region of insect mitochondrial DNA. Journal of Molecular Evolution, 40: 382–391.


  • There are currently no refbacks.


International Journal of Entomological Research

ISSN: 2310-3906 (Online), 2310-5119 (Print).

© ESci Journals Publishing. All Rights Reserved.